1: 2018/10/06(土) 14:28:43.41 ID:CAP_USER
 一夜にして、数千万~数億円が手に入る可能性がある宝くじ。「そう簡単に当たるわけないんだよな」と落ち込んだり、「日頃の行いが良いからね」とゴキゲンになったりと、当選結果に一喜一憂した経験がある人は少なくないはずですが、実際のところ、“どれくらい当たる”ものなのでしょうか。

 今回は、高校数学でも学習する「期待値」の考え方を使って「宝くじ1枚でいくら手に入るか」を考えてみます。

■「期待値」とは?

 そもそも「期待値」とは何なのかというと、「ある確率変数が平均してどのような値をとるか」を示す値であるといえます。ちょっと分かりにくいので、「サイコロの目の期待値」を例に挙げてみましょう。

 1から6まであるサイコロ面が、それぞれ同じ確率(=6分の1)で出るとします。出る目の値の平均は「1/6×1」「1/6×2」……「1/6×6」を全て足したもので、計算すると「3.5」になります。

 サイコロの目のようなランダムに変化する値を「確率変数」と呼び、確率変数がとる値とそうなる確率の積を足し合わせていくと、得られる結果の平均、すなわち期待値が分かるというわけです。

http://image.itmedia.co.jp/nl/articles/1809/13/qk_kuji01.jpg

■定番! ジャンボ宝くじ

 さて、ここからが本題。確率変数を「宝くじ1枚で得られる金額」として、その期待値を求めてみましょう。

 まずは、定番とも言うべきジャンボ宝くじについて。

 一般にいわれる「5大ジャンボ」とは、当せん金が高額な5つの宝くじの総称で、「バレンタインジャンボ(2月)」「ドリームジャンボ(5月)」「サマージャンボ(8月)」「ハロウィンジャンボ(10月)」「年末ジャンボ(12月)」を指します。

 直近にあった2018年のサマージャンボでは、1等の5億円に当たる確率は0.00001%と微々たるものでしたが、6等300円まで行くと10%となかなかのものです。これらの「金額×確率」の値を足していったところ、期待値はおよそ141円でした。

http://image.itmedia.co.jp/nl/articles/1809/13/qk_kuji02.jpg

他のジャンボ宝くじや同時発売の「ジャンボ宝くじミニ(最高額が低め)」でも、おおむね同じ値が出ましたが、年末ジャンボはもう少し高く、昨年(2017)末で約150円の期待値。これらの宝くじは1枚あたり300円と価格が同じなので、狙うなら年末でしょうか。

■スクラッチの場合

 では、逆にチャンスが多いスクラッチではどうでしょうか。

 スクラッチはいつでも販売されており、その場で当たり外れが分かるのが特徴です。回によってまちまちですが、今年(2018年)8月の「ドラゴンボールスクラッチ 魔人ブウ ラッキートライアル」は最高1000万円と、ジャンボ宝くじよりは低額ですが、その分当たりそうな気がします。

 先ほど同様、各等の「金額×確率」を足して計算すると、「魔人ブウ ラッキートライアル」の期待値は90円となりました。1枚が200円のため、割合にすると45%。300円のものもありますが、どれも価格の45%程度の期待値であり、ジャンボ宝くじよりも低くなっています。

■数字選択式宝くじの場合

 続いては数字選択式宝くじを見てみましょう。この中には「ロト6」「ロト7」「ミニロト」や「ナンバーズ」「ビンゴ5」という、読んで字のごとく数字を選んで買う宝くじが含まれます。

 同じくじなら価格は同じで、数字選択式宝くじの配当率は各等合計して45%と決まっており、期待値は原則どれを選んでも価格の45%です(実際には、100円未満が切り捨てられるので若干ブレますが)。

 ジャンボ宝くじの期待値が150円(価格の50%)弱ということを考えると、「ジャンボ宝くじの方が良いんじゃ?」という結論になりそうですが……注目すべきはロト6、ロト7の「キャリーオーバー」という制度。

 これは「1等の当たりが出なかった場合、次回にその分の金額を繰り越す」というもの。繰越金額は次の1等に上乗せされ、合計配当率45%とは“別に加算”されていきます。例えば、ロト7では1等の当せん金は最高10億円まで上がる可能性があるのですが、このときの各等の配当率の合計はおよそ58%になり、ジャンボ宝くじの期待値(の価格に対する割合)を上回ります。

続きはソースで 

ダウンロード (3)

引用元: 【数学】宝くじは“どれくらい当たる”のか? 高校数学で考える「当せん金額の期待値」[10/04]


続きを読む

Source: 理系にゅーす